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Figure 1: Qualitative illustration of high-resolution image blending. (a) shows the composite copy-and-paste image, where the
inserted object is circled out by the red polygon. Our approach (d) produces an image with better quality than those from the
alternatives (b) and (c) in terms of illumination, spatial, and color consistencies. Best viewed in color.

ABSTRACT

It is common but challenging to address high-resolution image
blending in the automatic photo editing application. In this paper,
we would like to focus on solving the problem of high-resolution im-
age blending, where the composite images are provided. We propose
a framework called Gaussian-Poisson Generative Adversarial Net-
work (GP-GAN) to leverage the strengths of the classical gradient-
based approach and Generative Adversarial Networks. To the best
of our knowledge, it’s the first work that explores the capability of
GANs in high-resolution image blending task. Concretely, we pro-
pose Gaussian-Poisson Equation to formulate the high-resolution
image blending problem, which is a joint optimization constrained
by the gradient and color information. Inspired by the prior works,
we obtain gradient information via applying gradient filters. To
generate the color information, we propose a Blending GAN to
learn the mapping between the composite images and the well-
blended ones. Compared to the alternative methods, our approach
can deliver high-resolution, realistic images with fewer bleedings
and unpleasant artifacts. Experiments confirm that our approach
achieves the state-of-the-art performance on Transient Attributes
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dataset. A user study on Amazon Mechanical Turk finds that the
majority of workers are in favor of the proposed method. The
source code is available in https://github.com/wuhuikai/GP-GAN,
and there’s also an online demo in http://wuhuikai.me/Deep]S.
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1 INTRODUCTION

Technologies such as PhotoShop make it much easier to edit an
image than before. However, image editing still requires talents. For
example, photos composited by expert users remain far better than
the ones from newcomers. As the camera technologies improve,
the high-resolution image makes photo editing becomes even more
challenging. We want to bridge the talent gap between expert users
and beginners on image editing. Mainly, we aim at addressing
the problem of high-resolution image blending, which focuses on
generating realistic high-resolution images given the composite
ones. As shown in Figure 1, users insert an object in the background
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Figure 2: Framework Overview of GP-GAN. Given a composite image x, the low-resolution realistic image X; is first generated
by Blending GAN G(x) with x! as the input, where x! is the coarsest scale in the Laplacian pyramid of x. Then we optimize the
Gaussian-Poison Equation H(x;,) constrained by C(x;) and P(x}) with the closed-form solution, resulting in 35111 that contains

rich details. We then upsample )?;l as the next X; and optimize the Gaussian-Poisson Equation at a finer scale in the pyramid

of x. Best viewed in color.

image (Figure 1a) and want to make it more realistic. Most users
would often have high expectation on the quality of the generated
images. If the algorithm produces images like Figure 1b or 1c, users
will give up the solution after their first few tries.

To generate well-blended images, Perez et al., Tanaka et al., and
Szeliski et al. [23, 28, 30] propose the classic gradient-based methods,
which enable a smooth transition and reduce the color/illumination
differences between foreground and background. Among these so-
lutions, Poisson image editing [23] is the most widely used method,
which firstly produces a gradient vector field based on the gradients
of the composite image and then recovers the blended image from
this gradient vector field by addressing a Poisson equation. Such
methods are good at generating high-resolution results with rich
details and textures. However, the generated images tend to be
unrealistic, which contain various kinds of artifacts. Because the
traditional gradient-based methods usually have strong assump-
tions about the distribution of realistic images based on human
priors.

Recent researches have achieved significant progress in model-
ing the distribution of realistic images with the rise of Generative
Adversarial Networks (GANs) [2, 5, 9, 24]. Concretely, GANs pro-
vide a framework for estimating the distribution of natural images
via simultaneously training a generator and a discriminator in a
zero-sum game. The generator can produce natural images after
training. Mirza et al. [13, 21] generalize the idea to a condition
setting, which expands the usage of GANs into image-to-image
applications like image inpainting [22]. Inspired by the success of
GAN s in generating realistic images, we propose to employ GANs
for overcoming the disadvantages of gradient-based image blending
algorithms. Compared to these methods, GANs are much better
at modeling the distribution of realistic images. However, it usu-
ally takes lots of computation and memory resources to generate
high-resolution images with rich details and textures.

We develop a novel framework named GP-GAN to combine the
strength of GANs and gradient-based image blending methods, as

shown in Figure 2, which consists of two phases. In phase one, a low-
resolution realistic image is generated based on the proposed Blend-
ing GAN. In phase two, we solve the proposed Gaussian-Poisson
Equation based on the gradient vector field and the generated image
in phase one fashioned by the Laplacian pyramid. This framework
allows us to achieve high-resolution and realistic images, as shown
in Figure 1d, which outperforms all the baseline methods. Our main
contributions are four folds, which are summarized as follows:

e We develop a framework GP-GAN for high-resolution image
blending that takes advantages of both GANs and gradient-
based image blending methods. To the best of our knowledge,
it is the first work that explores the capability of GANs in
high-resolution image blending task.

e We propose a network called Blending GAN for generating
low-resolution realistic images.

e We propose the Gaussian-Poisson Equation for combining
gradient information and color information.

e We also conduct a systematic evolution of the proposed
approach based on both benchmark experiments and user
studies on Amazon Mechanic Turk, which shows that our
method outperforms all the baselines and achieves the state-
of-the-art performance.

2 RELATED WORK

We briefly review the relevant works from the classical image blend-
ing approaches to generative adversarial networks and conditional
generative adversarial networks. We also discuss the difference
between our work and the others.

2.1 Image Blending

The goal of classical image blending approaches is to improve the
spatial and color consistencies between the source and target im-
ages. One way [10] is to apply the dense image matching approach
to copy and paste the corresponding pixels. However, this method
would not work when there are significant differences between the
source and target images. The other way is to make the transition



as smooth as possible for hiding artifacts in the composite images.
Alpha blending [33] is the simplest and fastest method, but it blurs
the fine details when there are some registration errors between
the source and target images. Alternatively, [1, 7, 14, 16, 19, 29, 33]
address this problem in the gradient domain. Our work is different
from these gradient-based approaches in that we introduce GANs
to generate a low-resolution realistic image as the color constraint,
resulting in a more natural composite image. [32, 35, 39] also ad-
dress a similar task to ours. However, they focus on adjusting the
color and illumination of the inserted object, requiring an accu-
rate segmentation mask. Differently, our method aims at making a
smooth transition around the edges of the source and target images
as well as reducing the color and illumination differences. Thus, a
well-blended image can be generated by our method, although the
segmentation mask of the inserted object is coarse.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) [9] are first introduced to
address the problem of generating realistic images. The main idea
of GANSs is a zero-sum game between learning a generator and a
discriminator. The generator tries to produce more realistic images
from random noises, while the discriminator aims to distinguish
generated images from the real ones. Although the original method
works for creating digital images from MNIST dataset, some gen-
erated images are noisy and incomprehensible. Denton et al. [5]
improve the quality of the generated images by expanding GANs
with a Laplacian pyramid implementation, but it does not work well
for the images containing objects looking wobbly. Gregor et al. [11]
and Dosovitskiy et al. [6] achieve successes in generating natural
images; however, they do not leverage the generators for super-
vised learning. Radfor et al. [24] achieve further improvement with
deeper convolutional network architecture, while Zhang et al. [37]
stack two generators to progressively render more realistic images.
InfoGAN [4] learns a more interpretable latent representation. Sali-
mans et al. [27] reveal several tricks in training GANs. Arjovsky et
al. [2] introduce an alternative training method Wasserstein GAN,
which relaxes the GAN training requirement of balancing the dis-
criminator and generator. However, existing GANSs still do not work
well for the image editing applications in that the generated results
are not high-resolution and realistic yet.

2.3 Conditional GANs

Our work is also related to conditional GANs [21], which aims to
apply GANs in a conditional setting. There are several works along
this research direction. Previous works apply conditional GANSs to
discrete labels [21], text [25], image inpainting [22], image predic-
tion from a normal map [34], image manipulation guided by user
constraints [40], product photo generation [36], style transfer [20],
and image-to-image translation [13]. Different from previous works,
we use an improved adversarial loss and discriminator for training
the proposed Blending GAN. We also propose the Gaussian-Poisson
Equation to produce high-resolution images.

3 THE APPROACH

In this section, we first introduce the task of image blending for-
mally. We then present the framework of our Gaussian-Poisson
Generative Adversarial Network (GP-GAN).

3.1 Image Blending

Given a source image Xsrc, a destination (target) image x4,, and
a mask image x5, the composite (copy-and-paste) image x can
be obtained by Equation 1,

X = Xsre * Xmask + Xdst * (1 = Xmask) (1)

where * is element-wise multiplication operator. The goal of image
blending is to generate a well-blended image X that is semantically
similar to the composite image x but looks more realistic and natural
with the resolution unchanged. x is usually a high-resolution image.

3.2 Framework Overview

Generating high-resolution well-blended images is hard. To tackle
this problem, we propose GP-GAN, a framework for generating
high-resolution and realistic images, as shown in Figure 2. This is
the first time that GANs are used for realistic high-resolution image
blending to the best of our knowledge.

GP-GAN seeks a well-blended high-resolution image xj, by opti-
mizing a loss function consisting of a color constraint and a gradient
constraint. The color constraint tries to make the generated image
more realistic and natural while the gradient constraint captures
the high-resolution details such as textures and edges.

The color constraint is constructed with a low-resolution realistic
image x;. To generate X;, we propose Blending GAN G(x) that
learns to blend a copy-and-paste image and generate a realistic one
semantically similar to the input. Once G(x) is trained, we can use
it to generate X; functioning as the color constraint.

The goal of gradient constraint is to generate the high-resolution
details, including textures and edges given the composite image x.
Their gradients directly capture textures and edges of an image. We
propose Gaussian-Poisson Equation to force X}, to have a similar
gradient to x while approximating the color of X;.

GP-GAN can naturally generate realistic images in arbitrary
resolution. Given a composite image x, we first obtain X; by feeding
x! to G(x), where x! is the coarsest scale in the Laplacian pyramid

of x. Then we update 5(}1 by optimizing Gaussian-Poisson Equation

with the closed-form solution. 32}11

is upsampled and serves as x;
at the finer scale in the Laplacian pyramid of x. The final realistic
image X, with the same resolution as x is obtained at the finest
scale of the pyramid.

In Section 3.3, we will describe the details of our Blending GAN
G(x). The details of GP-GAN and Gaussian-Poisson Equation will

be described in Section 3.4.

3.3 Blending GAN

We seek a low-resolution well-blended image X; that is visually
realistic and semantically similar to the input image. A straightfor-
ward way is to train a conditional GAN and use the generator to
produce realistic images. Since we have both the input image and
the corresponding ground truth x4, we aim to train a generator in
a supervised way. To achieve this goal, we propose Blending GAN



G(x), which leverages the unsupervised Wasserstein GAN [2] for
supervised learning tasks. The proposed Blending GAN is different
from Wasserstein GAN in that it has a proper constructed auxiliary
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loss and dedicated designed architecture.

Recent works discuss various loss functions for image processing
tasks, for instance, [; loss [38], Iz loss, and perceptual loss [15]. /; and
I3 loss can accelerate the training process but tend to produce blurry
images. The perceptual loss is good at generating high-quality
images but is time and memory consuming. We employ I, loss
in this paper because it could accelerate the training process and

generate sharp and realistic images when combined with GANs [13].

The combined loss function is defined as follows:

L(x,xg) = ALy, (x,xg) + (1 = A)Lgqo (X, xg), (2)
where A is 0.999 in our experiment. L;, is defined as follows:
Ly, (x.xg) = IG(x) = xgll3, 3)
and L, 4, is defined as follows:
Lago (x,xg) = max Exex[D(xg) = D(G(x))]. ©

The architecture of Blending GAN G(x) is shown in Figure 3,
which is motivated by [22]. We find that a network with only
convolutional layers could not learn to blend composite images for
the lack of global information across the whole image. Thus we
replace the channel-wise fully connected layer used in [22] with
standard fully connected layers.

W
| ~]

Figure 5: Image blending results generated by G(x). The ex-
periment is conducted on the Transient Attributes Data-
base [18]. x is the copy-and-paste image composited by x;,c
and x4, with a central-squared patch as the mask. x; is the
output of G(x) with size 64 X 64. x4 is the ground truth image
used for training G(x), which is the same as x ;. Best viewed
in color.

The architecture of the discriminator D(x) is shown in Figure 4.
We apply the batch normalization [12] and leaky ReLU after each
convolution except for the first layer and the last layer. The first
layer employs convolution and leaky ReLU, while the last layer
contains convolution only.

Training such a network needs massive data. The copy-and-
paste images are easy to collect, but the ground truth images x4
could only be obtained by expert users with image editing software,
which is time-consuming. Alternatively, we use x4; to approximate
Xg, since xsrc and xg,; in our experiment are photos of the same
scene under different conditions, e.g. season, weather, time of day,
see Section 4.1 for details. Through this way, we obtain massive



composite images and the corresponding ground truth, as shown
in Figure 5.

3.4 Gaussian-Poisson Equation

The proposed Blending GAN can only generate low-resolution
images, as shown in Figure 5. Even for slightly larger images, the re-
sults tend to be blurry with unpleasant artifacts, which is unsuitable
for image blending task. Since the task usually needs to combine
several high-resolution images and blend them into one realistic
image with the resolution unchanged. To make use of the realistic
images generated by Blending GAN, we propose Gaussian-Poisson
Equation fashioned by the well-known Laplacian pyramid [3] for
generating high-resolution and realistic images.

We observe that although our Blending GAN cannot produce
high-resolution images, the generated image x; is natural and realis-
tic as a low-resolution image. So we can seek a high-resolution and
realistic image X, by approximating the color of X; while capturing
rich details like textures and edges in the original high-resolution
image x. Such requirements are formulated into two constraints:
one is the color constraint, while the other is the gradient con-
straint. The color constraint forces X, to have a similar color to
X, which can be achieved by generating an image with the same
low-frequency signals as %;. The simplest way to extract the low-
frequency signals is using a Gaussian filter. The gradient constraint
tries to restore the high-resolution details, which is the same as
forcing xj, and x to have the same high-frequency signals. This step
could be implemented by using the divergence operator.

Formally, we need to optimize the objective function defined as
follows:

H(xp) = P(xp) + BC(xp). (5)
P(xy,) is inspired by the well-known Poisson Equation [23] and is
defined as follows:

P = [ divo - ax, i ©
T
C(xp,) is defined as follows:
Clxn) = fT llg(xn) — %115 dt, )

and f represents the color preserving parameter. We set f§ to 1
in our experiment. In Equation 6, T represents the whole image
region, div represents the divergence operator and A represents
the Laplacian operator. v is defined as follows:

e {Vx;rc i =1 @
Vx;st lfx:nask =

where V is the gradient operator. Gaussian filter is used in Equa-

tion 7 and is denoted as g(xy, ). The discretized version of Equation 5

is defined as follows:

H(xp) = llu— LXplI5 + AIGXy, — X113, 9

where u is the discretized divergence of v, L is the matrix of the
Laplacian operator, and G represents the Gaussian filter. X, and X;
are the vector representation of xj and x;. The closed-form solution
for minimizing the cost function of Equation 9 could be obtained
in the same manner as [8].

We integrate the closed-form solution for optimizing Equation 9
and the Laplacian pyramid into our final high-resolution image

blending algorithm, which is described by Algorithm 1. Given a
high-resolution input image xgr¢, x45; and x,,, 45, we first gen-
erate the low-resolution realistic image ¥; using Blending GAN
G(x). Then we generate Laplacian pyramids xg,, x5 ., x> .5 =
1,2,...,S, where S is the number of scales. s = 1 is the coarsest scale
and s = S is the original resolution. We update x;l by optimizing

Equation 9 at each scale and set X; to be upsampled x; . The final

realistic image X, with the unchanged resolution is set to be x;j.

Algorithm 1: High-Resolution Image Blending Framework
GP-GAN
Input :Source image xs,., destination image x;,;, mask
image x,,,45% and trained Blending GAN G(x)
1 Compute Laplacian Pyramid for xs,¢, x45; and x,,, 45k

2 Compute X; using G(x)
3 fors e [1,2,...,5] do

4 Updating xz by optimizing Equation 9 using the closed
S

S ask and x;

form solution given xg,.c, x} . x
5 Set X; to be upsampled x}
6 end

7 Return xi

4 EXPERIMENTS

In this section, the datasets for the experiments are introduced
firstly. Then the training configurations and experimental settings
are described. Finally, the effectiveness of our method are shown
quantitatively and visually by comparing with other methods.

4.1 Dataset

Transient Attributes Database [18] contains 8,571 images from 101
webcams. In each webcam, there are well-aligned 60-120 images
with severe appearance changes caused by weather, time of day,
and season, as shown in Figure 6a and Figure 6b.

For training G(x), we randomly select 2 images from the same
camera as xgrc (Figure 6a) and x4, (Figure 6b). As for the ground
truth xg4, we use x4, to approximate it since images under the
same webcam is perfect-aligned. x,,,5x is a binary image with
a central-squared patch, as shown in Figure 6c. The composite
copy-and-paste image is then obtained by Equation 1, as shown in
Figure 6d. Although G(x) is trained with the central-squared patch
as the mask, our experiments show that it is still able to generate
well-blended images for inputs with arbitrary masks.

To evaluate our method with arbitrary masks, we first manually
annotate object-level masks for Transient Attributes Database with
the LabelMe [26] annotation tool. Then we use the object-level
masks to composite the copy-and-paste images, which are used to
evaluate different image blending methods. The annotated mask
and corresponding composite image are shown in Figure 6e and
Figure 6f.

4.2 Implementation Details

Our method is implemented with Chainer [31]. To train Blending
GAN, we employ ADAM [17] for optimization, where « is set to
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Figure 6: Transient Attributes Database. (a) x5, and (b) x4,
are from the same webcam but in different seasons. (c) is
the central-squared mask and (d) is the corresponding com-
posite image. (e) is the object-level mask annotated with La-
belMe and (f) is the corresponding composite image. Best
viewed in color.

0.002, and B is set to 0.5. We randomly generate 150K images from
Transient Attributes Database using the central-squared patch as
the mask. Then the network is trained for 25 epochs with batch
size 64.

4.3 Quantitative Comparisons

Our method is compared with three classic image blending ap-
proaches. Poisson Image Editing (PB) [23] and its improved version
Modified Poisson Image Editing (MPB) [30] are selected as baselines
because both of them employ Poisson Equation in their solutions
as our method does. We also compare with multi-splines blending
(MSB) [28] for its effectiveness and extensive usage.

We first show the quantitative results of our method with realism
score as the metric. Realism score is produced by RealismCNN [39],
which predicts the visual realism of an image regarding color, light-
ing, and texture compatibility.

Our method is evaluated on 500 images that are randomly sam-
pled from Transient Attributes Database with the annotated masks.
The average realism scores for our method and the baselines are
shown in Table 1, where our method outperforms all the baselines.
We attribute this to the nature of our method because it can learn
what contributes to a realistic and natural image through adversar-
ial learning on large datasets. The average scores are negative for all

evaluated methods, which shows that many blended images are still
not realistic. This suggests that there are still many improvements
to be made for image blending algorithms.

Which image is more realistic and natural given the image below?

Image A Image B % Image C

Figure 7: The user interface for user study on Amazon Me-
chanical Turk. Followed by the composite image with xg,.
circled out, three blended results generated by different al-
gorithms are shown to subjects, and the most realistic one is
picked out. Best viewed in color.

(a) Input (b) x! (c) x;

Figure 8: Role of Blending GAN. (a) is a copy-and-paste im-
age. (b) employs the down-sampled x! as the color constraint.
(c) uses the output of Blending GAN %; as the color con-
straint. Best viewed in color.

4.4 User Study

Realism scores show the effectiveness of our method. Since image
blending is a user-oriented task, it is essential to conduct user study
for evaluation. We employ Amazon Mechanical Turk to collect
user assessments. Each time, a composite image x is shown to
the subjects followed by three blended images produced by three
different algorithms. The subjects are told to pick the most realistic
image among these three blended images, as shown in Figure 7.
The statistical result of user study is reported in Table 2. GP-GAN
is preferred by the majority of users, which is consistent with the
result of realism scores in Table 1.
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Figure 9: Results of our high-resolution blending algorithm compared with baseline methods. From top to bottom: annotated
object-level mask, composite copy-and-paste image, MPB, MSB, and GP-GAN(ours). Results of baseline methods have severe
bleedings, illumination inconsistencies, or other artifacts, while GP-GAN produces pleasant, realistic images. Best viewed in
color.

Table 1: Realism scores for our method and the baselines Table 2: User study result. 4 image blending algorithms are
(higher is better). GP-GAN outperforms all the baselines. compared on Amazon Mechanical Turk. Our method GP-
GAN obtains most votes, which is consistent with the result
of the realism scores.

Method Input PB[23] MPB[30] MSB[28] Ours

Score -0.696  -0.192 -0.151 -0.140 -0.069
Method  Total votes Average votes  Std.
PB[23] 527 1.054 1.065
MPB[30] 735 1.470 1.173
MSB[28] 770 1.540 1.271
4.5 Role of Blending GAN GP-GAN 947 1.894 1311

The output of Blending GAN serves as the color constraint. In this
section, we demonstrate the role of Blending GAN by replacing X;
with the down-sampled composite image x'. The blended results
with either %; or x! as the color constraint are compared. As shown
in Figure 8, the blended image tends to have more bleedings and Finally, we demonstrate the results of our high-resolution image
illumination inconsistencies if %; is replaced by x!, which shows blending algorithm visually by comparing with MPB and MSB. As
the usefulness of low-resolution natural images in our method. shown in Figure 9, our method tends to generate realistic results

4.6 Qualitative Comparisons



Figure 10: Results of GP-GAN on real images. The top is the copy-and-paste images and the bottom is the blended images. Best

viewed in color.

while preserving the appearance of both xg,¢ and x4,;. Compared
to the baseline methods, there are nearly no bleedings or illumina-
tion inconsistencies in our results while all the baseline methods
have more or fewer bleedings and artifacts.

Our method can also be applied to real images in high resolution,
as shown in Figure 10.

5 CONCLUSION

We advanced the state-of-the-art in image blending by combining
the ideas from the generative model GANs and gradient-based
approaches. Our insight is, on the one hand, GANs are good at
generating natural images from a particular distribution but weak
in capturing the high-frequency image details like textures and
edges. On the other hand, the gradient-based methods perform
well at generating high-resolution images with local consistency,
although the generated images tend to be unnatural and have many
artifacts. GANs and gradient-based methods should be integrated.
Hence, this integration would result in an image blending system
that overcomes the drawbacks of both approaches. Our system
can also be useful for image-to-image translation task. Despite the
effectiveness, our algorithm fails to generate realistic images when

the composite images are far away from the distribution of the
training dataset. We aim to address this issue in future work.
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A. VISUAL RESULTS

More visual results are shown in Figure 11 and Figure 12.

Figure 11: Results of our high-resolution image blending algorithm compared with baseline methods. From top to bottom:
annotated object-level mask, composite copy-and-paste image, MPB, MSB, and GP-GAN.



Figure 12: Results of our high-resolution image blending algorithm compared with baseline methods. From top to bottom:
annotated object-level mask, composite copy-and-paste image, MPB, MSB, and GP-GAN.



	Abstract
	1 Introduction
	2 Related Work
	2.1 Image Blending
	2.2 Generative Adversarial Networks
	2.3 Conditional GANs

	3 The Approach
	3.1 Image Blending
	3.2 Framework Overview
	3.3 Blending GAN
	3.4 Gaussian-Poisson Equation

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Quantitative Comparisons
	4.4 User Study
	4.5 Role of Blending GAN
	4.6 Qualitative Comparisons

	5 Conclusion
	Acknowledgments
	References

